is building frontier code models to automate software engineering and research.
We believe the most promising path to safe AGI is to automate AI research and code generation to improve models and solve alignment more reliably than humans can alone. Our approach is to combine frontier-scale pre-training, domain-specific reinforcement learning, ultra-long context, and inference-time compute to achieve this goal.
To support our mission, we have 8,000 H100s and raised $515 million from Nat Friedman, Daniel Gross, CapitalG, Elad Gil, Sequoia, Jane Street, Eric Schmidt and others.
We are a small group of engineers and researchers working to solve a short list of fundamental research problems on a direct path to AGI. If this sounds interesting, we would love to hear from you.
Research Engineer
SF / RemoteApplied Research Engineer - Post-training
SFDistributed Systems Engineer
SF / RemoteHPC Networking Lead
SF / RemoteHuman Data Lead
SFKernel Engineer
SF / RemotePrincipal Security Engineer/Head of Security
SFSoftware Engineer
SFSoftware Engineer - Post-training Data
SFSoftware Engineer - Pretraining Data
SF / RemoteSoftware Engineer - Supercomputing Platform & Infrastructure
SF / Remote<insert-job-you-excel-at/>
SF / Remote